電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトコンピューティング・学習>
深層学習を用いたパネル上の積雪率予測による太陽光発電電力量予測の高精度化
西田 義人泉井 良夫夏梅 大輔田畑 浩数
著者情報
ジャーナル 認証あり

2025 年 145 巻 2 号 p. 169-181

詳細
抄録

In this research, we propose a novel method to accurately predict snow cover rate on photovoltaic panels in snowy areas for precise photovoltaic power generation predicting. Our proposed method utilizes weather data and past snow cover rates as input into a deep learning model composed of an autoencoder for compressing weather data dimensions and a bidirectional LSTM network for time series modeling. The deep learning model can predict hourly snow cover rates during daylight hours for the target prediction period. In experiments, we compare the prediction accuracy against using various data patterns and various deep learning models. As a result of the evaluation, the proposed method achieved the highest accuracy. Moreover, applying the predicted snow cover rates to photovoltaic power predicting substantively improves accuracy compared to using only weather data. These results demonstrate the effectiveness of the proposed method.

著者関連情報
© 2025 電気学会
前の記事 次の記事
feedback
Top