電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトコンピューティング・学習>
深層強化学習のハイパーパラメータと報酬関数のベイズ最適化~移動ロボットへの適用~
曽田 涼介西村 拓人堀内 匡
著者情報
ジャーナル 認証あり

2025 年 145 巻 2 号 p. 190-198

詳細
抄録

Deep reinforcement learning is a machine learning method that combines deep learning and reinforcement learning. Deep Q-network (DQN) is one of the typical methods of deep reinforcement learning. DQN uses Convolutional Neural Network (CNN) which can extract features from the input images. We have applied DQN method to the mobile robot navigation problem. The values of hyper-parameters, including the network structure of DQN, and the reward function used in the DQN algorithm, have been determined empirically. In this study, we attempt to optimize both of the values of hyper-parameters and reward function of deep reinforcement learning by using Bayesian optimization. We realized to optimize the values of hyper-parameters including the network structure of DQN, and the reward function by using Optuna, a framework of Bayesian optimization. We confirmed that the values of hyper-parameters and reward function obtained by Optuna have higher learning performance than that by empirical method.

著者関連情報
© 2025 電気学会
前の記事 次の記事
feedback
Top