電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
指数族の確率密度関数に対する一推定法とその漸近的性質
沖田 豪森山 博教
著者情報
ジャーナル フリー

1992 年 112 巻 11 号 p. 720-726

詳細
抄録
In this paper, We estimate the probability density function for the stochastic process whose probability density function belongs to the exponential family. First, we hypothesize the candidate probability density functions on basis of a priori information, and then estimate the statistics of the probability density function by the maximum likelihood method. Next, a posteriori probability of each candidate density function can be calculated by the Bayesian theorem. After enough observation data were obtained, we may select the probability density function whose probability is the highest among the candidate functions.
Furthermore, we investigate the asymptotic property of a posteriori probability. A posteriori probability of the density function which is the most closed to the true probability function in the sense of Kullback's information, approaches to one as data increase enough.
著者関連情報
© 電気学会
前の記事
feedback
Top