電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
一般化学習ネットワークの安定性理論
平澤 宏太郎大林 正直古賀 勝
著者情報
ジャーナル フリー

1996 年 116 巻 8 号 p. 973-982

詳細
抄録
Higher order derivatives of Universal Learning Network (U.L.N.) has been derived by forward and backward propagation computing methods, which can model and control large scale complicated systems such as industrial plants, economic, social and life phenomena. In this paper, a new concept of nth order asymptotic orbital stability for U.L.N. is defined by using higher order derivatives of U.L.N. and sufficient condition of asymptotic orbital stability for U.L.N. is derived. It is also shown that if 3rd order asymptotic orbital stability for recurrent neural network is proved, higher order asymptotic orbital stability than 3rd order is guaranteed.
著者関連情報
© 電気学会
前の記事
feedback
Top