電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
進化戦略の適用による階層型ネットワークの汎化能力向上に関する研究
小川 哲渡辺 隆男安田 恵一郎横山 隆一
著者情報
ジャーナル フリー

1997 年 117 巻 2 号 p. 143-149

詳細
抄録
This paper proposes a new algorithm for advancing the generalization ability of multilayer neural networks. The proposed algorithm, based on regularization theory, is a method for determining the regularization parameter, on condition that the training data is shown additionally. It is not a method that solves a problem for all training data again when additional training data is shown, but rather a method that adjusts the regularization parameter to fit additional training data. The characteristics of this algorithm are (1) the prediction error for the additional data is used in evaluating to determine the regularization parameter, (2) Evolution strategies (ES) that is multipoint search method is used for the determination problem of regularization parameter. The evaluation of the regularization parameter varies according to the data added. This study simulated an additional learning problem to examine the performance of the proposed method. And the simulation results are presented in this paper.
著者関連情報
© 電気学会
前の記事 次の記事
feedback
Top