2022 Volume 142 Issue 3 Pages 94-100
Several studies for partial discharge (PD) pattern recognition using artificial neural network (ANN) were reported in the early 1990s. Usually, in an actual field such as a substation, data on partial discharge is scarcely available, or even rare. In many cases, the power supply phase required for the PRPD pattern cannot be easily obtained. We propose an ANN method that shifts the phase in which the maximum signal intensity detected with PD sensors is generated and used it as training and input data, even for the few phases resolved PD data available in the field. This ANN method was applied to the PRPD pattern obtained in a practical field. As a result, it was shown that the discrimination rate between PD and noise was improved, and therefore the proposed ANN method was found to be effective.
The transactions of the Institute of Electrical Engineers of Japan.A
The Journal of the Institute of Electrical Engineers of Japan