IEEJ Journal of Industry Applications
Online ISSN : 2187-1108
Print ISSN : 2187-1094
ISSN-L : 2187-1094
Paper
Movement Control Based on Model Predictive Control with Disturbance Suppression using Kalman Filter including Disturbance Estimation
Takashi OhhiraAkira Shimada
Author information
JOURNAL FREE ACCESS

2018 Volume 7 Issue 5 Pages 387-395

Details
Abstract

This study proposes a movement control system based on model predictive control (MPC), and a Kalman filter (KF) that can consider the influences of noise and disturbance. The KF estimates not only the motion state but also the disturbance of the controlled objects affected by noise. Disturbance is introduced by the stationary disturbance, by the system noise, and by observation noise. An MPC system filtered by the KF is robust and suppresses disturbances using the special design method proposed in this study. The feasibility of the MPC-based control system is confirmed under conditions of strong intermittent disturbances, such as road surface and sensor noises, and a friction force with less time variation. Finally, the proposed method is tested in simulations of a cart traveling in a straight line. The superior simulation results over the existing MPC system validate the proposed control system.

Content from these authors
© 2018 The Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top