電気学会論文誌B(電力・エネルギー部門誌)
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
論文
回転対称な垂直接地電極についてのインピーダンス解析法の開発
田辺 一夫河本 正
著者情報
キーワード: 過渡接地, 電磁界解析
ジャーナル フリー

2005 年 125 巻 2 号 p. 165-169

詳細
抄録
It is needed to study the transient performance of grounding systems for lightning surges to ensure the electromagnetic compatibility (EMC) of sensitive electronics such as information devices and digital relays in substations and/or residential houses. Therefore, an easy method of estimating frequency response to represent the transient performance of grounding systems and its incorporation into Electromagnetic Transient Program (EMTP) are highly desired.
EMTP based on circuit theory has been applied to resolve the transient performance of electrical apparatus consisting of cables and conductors which are parallel to the ground surface, in which the propagation of TEM waves that are plane waves is implicated, and devices such as surge arresters represented by lumped elements. However, conductors which are vertical to the ground surface have not been modeled because TM waves propagate on such conductors and the characteristics in early time, when the approximation of plane waves is not adapted, are required.
In this paper, for the vertical and rotatory symmetric grounding electrodes, we propose a computational method for the impedance, which is defined as the complex ratio of the potential of its top at the ground surface to the current flowing into it in the frequency domain. The potential is derived from the integral of the horizontal component of electric fields along the path reaching the electrode on the ground surface because the potential could be uniquely defined in the case of a horizontal plane by considering the electromagnetic field in the configuration discussed here.
We then calculated the potential of the electrode and current flowing into it in the time domain by computational analysis of transient performance based on the FD-TD method (CATP) and the impedance up to 20MHz in the frequency domain were derived using the Fourier transforms of the potential and current in the time domain.
著者関連情報
© 電気学会 2005
前の記事 次の記事
feedback
Top