IEEJ Transactions on Sensors and Micromachines
Online ISSN : 1347-5525
Print ISSN : 1341-8939
ISSN-L : 1341-8939
Special Issue Paper
Metal Oxide Semiconductor Nanoparticles for Chemical Gas Sensors
Marie-Isabelle Baraton
Author information
JOURNAL FREE ACCESS

2006 Volume 126 Issue 10 Pages 553-559

Details
Abstract
During the recent years, it has been widely recognized that the use of semiconductor nanoparticles for the fabrication of chemical gas sensors by screen-printing technology definitely improves the sensor performance. In this paper, we review the possibilities offered by Fourier transform infrared (FTIR) spectroscopy for the study of semiconductor nanoparticles. Thanks to FTIR spectroscopy, it is possible to identify the surface chemical groups, to characterize the surface reactivity, to monitor the surface functionalization, to investigate the surface reactions at the origin of the gas detection, and to evaluate the gas sensing potentiality of the nanoparticles before the device fabrication. All these steps are critical for the optimization of nanoparticle-based gas sensors because they ensure i) the reproducibility of the surface chemical composition and of the surface chemistry, ii) the control of the surface modifications to decrease cross-sensitivity, particularly to humidity, iii) the investigation of the gas detection mechanism to properly tailor the surface structure, iv) the selection of the best nanoparticles batches for further processing. Examples of tin oxide and titanium oxide nanoparticles are discussed with regards to CO and NOx detection.
Content from these authors
© 2006 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top