IEEJ Transactions on Sensors and Micromachines
Online ISSN : 1347-5525
Print ISSN : 1341-8939
ISSN-L : 1341-8939
Special Issue Paper
Fabrication and Evaluation of Actuators for Reaction Force Variable Passive-type Tactile Displays
Keita NambaraTakahiro YamazakiChiemi OkaSeiichi HataJunpei Sakurai
Author information
JOURNAL RESTRICTED ACCESS

2021 Volume 141 Issue 9 Pages 304-309

Details
Abstract

In this paper, we report on the fabrication and evaluation of actuator for reaction force variable passive-type tactile display using high formable Ti-Ni-Cu shape memory alloy. This actuator is driven by the superelastic effect and superior in force expression, responsiveness, and miniaturization compared to conventional tactile displays using shape memory alloys. This actuator was fabricated in a convex shape by utilizing a viscous flow of Ti-Ni-Cu metallic glass. After crystallization, the metallic glass was changed to the shape memory alloy. In this manner, we successfully acquired the desired convex cross structure with a height of 123 µm at the center of cross. Additionally, while pushing 100 µm, we successfully varied the reaction force ranged from 40 to 80 mN, necessary to deform the skin and electrical resistance linearly by controlling the temperature. From these results, we showed that the actuator of this study can be used as tactile display that can express desired hardness and softness by temperature control. We also showed the possibility that the temperature of each actuator can be controlled individually by electrical heating using the linear relationship between temperature and electrical resistance.

Content from these authors
© 2021 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top