International Journal of Activity and Behavior Computing
Online ISSN : 2759-2871
Depression Detection via Facial Expressions and Movement Analysis Using Machine Learning with Optimized Feature Selection
Bagus Hardiansyah Fajar Astuti HermawatiDymas Adi SaputraDanara Dhasa Caesa
著者情報
ジャーナル オープンアクセス

2025 年 2025 巻 2 号 p. 1-25

詳細
抄録
Mental health disorders affect millions of people globally, posing considerable challenges for the detection and monitoring of depression. In this study, we aim to introduce several feature selection and machine learning approaches to optimize the data on facial behavior AUs, probabilities classification, head Euler angles, and facial landmarks with 25 participants. We computed statistical features for AUs, probabilities classification, head Euler angles, and facial landmarks such as min, max, mean, median, sum, and standard deviation of each facial data point from 25 participants for detection value data from PHQ-9 label depression episode between 0 and 1. Therefore, we achieve significant indicators of depressive episodes, achieving 0.94% of AUROC with the model SVC approach, 0.92% of AUROC with the model random forest classifier approach, 0.91% of AUROC with the model XGBClassifier approach, and 0.91% of AUROC with the model ANN machine learning approach, respectively.
著者関連情報
© 2025 Author

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top