International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Biomedical Applications
Influence of Early-Stage Hydrolysis on Tensile Fracture Behavior of HAp/PLA Composites Interface-Controlled by Reaction Control Utilizing Photodissociable Protecting Groups
Mototsugu TanakaTomoyuki TakahashiIsao Kimpara
著者情報
ジャーナル オープンアクセス

2017 年 11 巻 6 号 p. 932-940

詳細
抄録

In this study, the change in the tensile fracture behavior of HAp/PLA composites, interface-controlled using pectin and chitosan, was evaluated for the case of the early-stage hydrolysis. Here, the reaction between the HAp particles and modification polymers was controlled using o-nitrobenzyl alcohol. Tensile tests after immersion in a pseudo biological environment indicated that the interface-control method employed in this study improved the fracture properties of HAp/PLA composites significantly, inducing the large plastic deformation. In addition, the effects of early-stage hydrolysis on fracture behavior and mechanism are discussed from the viewpoint of interfacial structures for the interface-controlled HAp/PLA composites. Observations of fracture morphologies and surfaces suggest that the interface-control employed in this study successfully improved interfacial bonding, enabling the effective usage of the deformability of the PLA matrix. The interface-control method employed in this study also maximized the fracture strain through the combination of improved interfacial bonding and an increase in the ductility of the PLA matrix after a 2-week immersion. Test results also suggest that the cancelation induced by the degradation of chitosan accelerated the degradation of the PLA matrix after a longer immersion.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top