Information and Media Technologies
Online ISSN : 1881-0896
ISSN-L : 1881-0896
Media (processing) and Interaction
Automatic Martian Dust Storm Detection from Multiple Wavelength Data Based on Decision Level Fusion
Keisuke MaedaTakahiro OgawaMiki Haseyama
著者情報
ジャーナル フリー

2015 年 10 巻 3 号 p. 473-477

詳細
抄録
This paper presents automatic Martian dust storm detection from multiple wavelength data based on decision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected visual features are used to train the Support Vector Machine classifiers that are constructed on each data. Furthermore, as a main contribution of this paper, the proposed method integrates the multiple detection results obtained from heterogeneous data based on decision level fusion, while considering each classifier's detection performance to obtain accurate final detection results. Consequently, the proposed method realizes successful Martian dust storm detection.
著者関連情報
© 2015 Information Processing Society of Japan
前の記事 次の記事
feedback
Top