ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Nucleation of nano-sized prismatic dislocation loop from spherical vacancy clusters in α-iron: An atomic-scale study
Mugilgeethan Vijendran Ryosuke Matsumoto
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: ISIJINT-2023-338

この記事には本公開記事があります。
詳細
抄録

The concentration of vacancy-type defects in α-iron is increased by plastic deformation and the presence of hydrogen. This leads to the accumulation of monovacancies, either in the form of planar vacancy clusters (VCs) or small voids. The prismatic dislocation loop (PDL) can nucleate from VC as vacancies agglomerate into two-dimensional (2D) VCs and collapse due to attractive force between two interior surfaces. The transition between 2D-VC and PDL is comparatively more straightforward, requiring only a short displacement without the need for atom diffusion to reach stability. However, the most stable VC configuration is three-dimensional (3D) (spherical cluster), which have lower formation energy than 2D-VCs. Despite their stability, the transformation from 3D-VC to PDL is complex, involving the diffusion of multiple atoms. A quantitative energy barrier is established for transitioning from 3D-VC to nano-sized 1/2<111> PDLs using an approach that combines the reaction rate theory and molecular dynamics (MD) simulations. The nucleation of PDL from a spherical cluster composed by 15 vacancies is a rare event at room temperature, even under considerable compressive strain since the activation energy is 1.33 eV. In contrast, 2D-VC with 37 vacancies can be nucleated to PDL with an energy barrier of 0.61 eV.

著者関連情報
© 2023 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top