映像情報メディア学会誌
Online ISSN : 1881-6908
Print ISSN : 1342-6907
ISSN-L : 1342-6907
論文
顔と首領域の画像を用いた複数の識別器の統合による性別識別
Kazuya UekiTetsunori Kobayashi
著者情報
ジャーナル フリー

2007 年 61 巻 12 号 p. 1803-1809

詳細
抄録
To reduce the rate of error in gender classification,we propose the use of an integration framework that uses conventional facial images along with neck images.First,images are separated into facial and neck regions,and features are extracted from monochrome,color,and edge images of both regions.Second,we use Support Vector Machines(SVMs) to classify the gender of each individual feature.Finally,we reclassify the gender by considering the six types of distances from the optimal separating hyperplane as a 6-dimensional vector.Experimental results show a 28.4% relative reduction in error over the performance baseline of the monochrome facial image approach,which until now had been considered to have the most accurate performance.
著者関連情報
© 2007 一般社団法人 映像情報メディア学会
前の記事 次の記事
feedback
Top