Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Cross-Media Retrieval Based on Query Modality and Semi-Supervised Regularization
Yihe LiuHuaxiang ZhangLi LiuLili MengYongxin WangXiao Dong
著者情報
ジャーナル オープンアクセス

2017 年 21 巻 7 号 p. 1211-1220

詳細
抄録

Existing cross-media retrieval methods usually learn one same latent subspace for different retrieval tasks, which can only achieve a suboptimal retrieval. In this paper, we propose a novel cross-media retrieval method based on Query Modality and Semi-supervised Regularization (QMSR). Taking the cross-media retrieval between images and texts for example, QMSR learns two couples of mappings for different retrieval tasks (i.e. using images to search texts (Im2Te) or using texts to search images (Te2Im)) instead of learning one couple of mappings. QMSR learns two couples of projections by optimizing the correlation between images and texts and the semantic information of query modality (image or text), and integrates together the semi-supervised regularization, the structural information among both labeled and unlabeled data of query modality to transform different media objects from original feature spaces into two different isomorphic subspaces (Im2Te common subspace and Te2Im common subspace). Experimental results show the effectiveness of the proposed method.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top