Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Adaptive Fertigation System Using Hybrid Vision-Based Lettuce Phenotyping and Fuzzy Logic Valve Controller Towards Sustainable Aquaponics
Ronnie S. Concepcion IISandy C. LauguicoJonnel D. AlejandrinoArgel A. BandalaEdwin SybingcoRyan Rhay P. VicerraElmer P. DadiosJoel L. Cuello
著者情報
ジャーナル オープンアクセス

2021 年 25 巻 5 号 p. 610-617

詳細
抄録

Sustainability is a major challenge in any plant factory, particularly those involving precision agriculture. In this study, an adaptive fertigation system in a three-tier nutrient film technique aquaponic system was developed using a non-destructive vision-based lettuce phenotype (VIPHLET) model integrated with an 18-rule Mamdani fuzzy inference system for nutrient valve control. Four lettuce phenes, that is, fresh weight, chlorophylls a and b, and vitamin C concentrations as outputted by the genetic programming-based VIPHLET model were optimized for each growth stage by injecting NPK nutrients into the mixing tank, as determined based on leaf canopy signatures. This novel adaptive fertigation system resulted in higher nutrient use efficiency (99.678%) and lower chemical waste emission (14.108 mg L-1) than that by manual fertigation (92.468%, 178.88 mg L-1). Overall, it can improve agricultural malpractices in relation to sustainable agriculture.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top