Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Improved YOLOv8-Based Algorithm for Detecting Helmets of Electric Moped Drivers and Passengers
Si-Yue FuDong Wei Liu-Ying Zhou
著者情報
ジャーナル オープンアクセス

2025 年 29 巻 2 号 p. 349-357

詳細
抄録

After learning, the object-detection algorithm can automatically detect whether the riders of electric mopeds are wearing helmets, thereby saving regulatory labor costs. However, the complex environmental background and headwear similar to helmets can easily cause a large number of false negatives and false positives, increasing the difficulty of detection. This paper proposes the YOLOv8n-Improved object-detection algorithm. First, in the neck part, the algorithm uses a simplified weighted bi-directional feature pyramid network structure to remove single input nodes, add connection edges, and attach path weights according to the importance of features. This structure optimizes the algorithm’s multiscale feature-fusion capability while improving computational efficiency. In the head part, the algorithm uses the scale-sensitive intersection over union loss function to introduce the vector angle between the predicted and ground-truth boxes, redefining the penalty metric. This improvement speeds up the convergence process of the network and improves the accuracy of the model. After comparative validation on the test set, the YOLOv8n-Improved algorithm shows a 1.37% and 3.16% increase in the average precision (AP) metric for electric moped and helmet detection, respectively, and a 2.27% increase in the overall mean AP metric, with a reduction in both false negatives and false positives for the two categories.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2025 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top