計画行政
Online ISSN : 2189-3667
Print ISSN : 0387-2513
ISSN-L : 0387-2513
特集論説
非構造化データを活用する試み
―議会会議録と有価証券報告書を例として―
木村 泰知
著者情報
ジャーナル フリー

2023 年 46 巻 4 号 p. 9-14

詳細
抄録

This paper describes shared tasks that use natural language processing techniques to link textual and tabular data, which are treated as unstructured data. Specifically, it describes the shared tasks of finding the basis for the figures and amounts contained in the tables in the minutes of local council meetings and annual securities reports. The local assembly minutes and annual security reports provide data that are expected to be used as primary information. However, publicly available data often consist of unstructured document formats. Therefore, we designed a budget argument mining task, which analyses the argument structure of the minutes, focusing on monetary expressions (amount of money). Furthermore, we designed the shared tasks of text-table relationship extraction and table data extraction. In this paper, we provide an overview of these shared tasks.

著者関連情報
© 2023 一般社団法人 日本計画行政学会
前の記事 次の記事
feedback
Top