Journal of Biomechanical Science and Engineering
Online ISSN : 1880-9863
ISSN-L : 1880-9863

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography (sEMG) signals
Junghoon PARKHyunkyu PARKJung KIM
著者情報
ジャーナル フリー 早期公開

論文ID: 16-00595

この記事には本公開記事があります。
詳細
抄録

In this paper, we evaluate the performance of the rigid and soft exoskeleton by measuring electromyography (sEMG) signal of human lower limb muscles. sEMG represents the degree of muscle activation and the higher sEMG level can be measured if the greater muscle force generated. We compared the sEMG activation level whether wearing the rigid exoskeleton or soft exoskeleton. First, we manufactured the rigid inspired by ‘Berkeley Lower Extremity Exoskeleton (BLEEX)’ and soft exoskeleton motivated by ‘Exosuit’ respectively. After developed the systems, sEMG signals on VM, HAM, GAS, and TA with the rigid lower limb exoskeleton were measured during walking. As a result, up to 150 % muscle activation level increased and it implies that the resistance occurred between human and the rigid lower limb exoskeleton and the user should make an effort to generate more force. After validate the limitation of the rigid lower limb exoskeleton, we did isometric experiment with the soft lower limb exoskeleton, there was 3.4 % normalized MAV decrease at GAS muscle. From this result, we concluded that developed soft lower limb exoskeleton assisted the subject with lower muscle activation level. In addition, the density of the sEMG signal was lower when the subject was assisted by the developed system. It implies that lower fatigue human can feel to maintain isometric condition. Therefore, soft lower limb exoskeleton can assist human more effective than the rigid lower limb exoskeleton.

著者関連情報
© 2017 by The Japan Society of Mechanical Engineers
feedback
Top