Journal of Clinical Biochemistry and Nutrition
Online ISSN : 1880-5086
Print ISSN : 0912-0009
ISSN-L : 0912-0009

This article has now been updated. Please use the final version.

Increase of oxidation rate of uric acid by singlet oxygen at higher pH
Rina HorinouchiYorihiro YamamotoAkio Fujisawa
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 20-101

Details
Abstract

Singlet oxygen prefers to react with an electron-rich double bonds. We observed that the oxidation rate for uric acid with singlet oxygen increased with increasing pH and the oxidation rate dramatically was elevated at around pH 5.4 and 9.8, which are the acidity constants of uric acid, pKa1 and pKa2, respectively. Furthermore, we observed that the absorbance near 200 nm and the molar extinction coefficient (ɛ) increased with increasing pH, similar to the change in oxidation rate. Computer calculations by Chong [Chong, J Theor Comput Sci 2013; 1(1)] revealed that uric acid elongates its C=N conjugated diene structure with increasing pH. This is correlated with an increase in the UV absorbance of C=C double bonds near 200 nm, and may indicate higher electron density in the double bonds. Therefore, we concluded that the increased oxidation rate is due to elongation of the C=N conjugated polyene system at higher pH. On the other hand, the major products were 4-hydroxyallantoin and parabanic acid (hydrolyzed to oxaluric acid at pH 10.7), suggesting that the reaction pathways were the same regardless of pH. Finally, possible reaction schemes are presented.

Content from these authors
© 2021 JCBN

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top