Journal of Computer Chemistry, Japan
Online ISSN : 1347-3824
Print ISSN : 1347-1767
ISSN-L : 1347-1767
速報論文 (Selected Papers)
ランダムフォレストを用いた結晶性高分子のX線散乱回折データの解析
髙橋 数冴天本 義史菊武 裕晃伊藤 真利子高原 淳大西 立顕
著者情報
ジャーナル フリー HTML
電子付録

2021 年 20 巻 3 号 p. 103-105

詳細
抄録

Crystalline polymers have a hierarchical structure in which polymer chains are folded. Although each hierarchical structure strongly affects the physical properties of crystalline polymers, it is hard to describe the relationship between the formation conditions, crystal structure and physical properties. We used Random Forest regression to comprehensively investigate the relationship between these features of polylactic acid (PLA), a biodegradable crystalline polymer. It was suggested that important features for mechanical property and biodegradability, where the trade-off relationship between them is a significant issue of PLA, are related to the different level crystal structures. This shows that it is possible to use Random Forest for complex prediction of crystalline polymer properties to search for important forming conditions and crystal structures.

Fullsize Image
著者関連情報
© 2021 日本コンピュータ化学会
前の記事 次の記事
feedback
Top