Journal of Computer Chemistry, Japan
Online ISSN : 1347-3824
Print ISSN : 1347-1767
ISSN-L : 1347-1767

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

化学構造の高速データマイニングのための特徴ベクトルTFSの圧縮法
志賀 元紀高橋 由雅
著者情報
ジャーナル フリー 早期公開

論文ID: 2012-0002

この記事には本公開記事があります。
詳細
抄録
医薬品の候補となる化合物空間は極めて膨大であり,また,化合物関連データベースが大規模化しているため,少ない計算コストのデータ解析手法が望まれる.本研究では,高橋らの開発した特徴ベクトルであるトポロジカルフラグメントスペクトル(Topological Fragment Spectra, TFS)を圧縮するによって,計算コストを抑えるアプローチを検討した.まず,TFSが周期性のあるスペクトルであることを示した.そして,周期性信号の圧縮に用いられるフーリエ変換とウェーブレット変換に基づくアプローチを用いて圧縮する手法を検討した.各手法で圧縮した特徴ベクトルを用いた類似度構造検索および薬理活性予測の数値実験によって,ウェーブレット変換による圧縮がより効率的な圧縮法であることが示された.
著者関連情報
© 日本コンピュータ化学会
feedback
Top