Abstract
(CO)nで記されるCO単位の環状重合体であるオキソカーボンは長年関心を集めてきた.しかし,Oをカルコゲン原子Ch = (S, Se, Te)で置換した擬オキソカーボン類については,これまで系統的に理論計算による検討はなされてはいない.そこで今回,(CCh)n (n = 5,6)についてDFT計算による分子構造の最適化とNICS値の算定を試みた.最適化計算からは,カルコゲンが高周期になるにつれて構造の平面性が増すことが分かった.NICS値からは,(CTe)6でベンゼンに匹敵する芳香族性が示唆された.
Tables
Table 1. Natural population results of C
5Ch
5.
| Charge | Natural Electron Configuration |
| O | −0.38 | [core]2S (1.71) 2p (4.66) 3p (0.01) 3d (0.01) |
| S | 0.26 | [core]3S (1.75) 3p (3.96) 4S (0.01) 3d (0.01) 4p (0.01) 5p (0.01) |
| Se | 0.31 | [core]4S (1.81) 4p (3.86) 4d (0.01) 6p (0.01) |
| Te | 0.39 | [core]5S (1.85) 5p (3.75) 5d (0.01) 7p (0.01) |
Table 2. Natural population results of C
6Ch
6.
| Charge | Natural Electron Configuration |
| O | −0.39 | [core]2S (1.71) 2p (4.66) 3p (0.01) 3d (0.01) |
| S | 0.24 | [core]3S (1.77) 3p (3.96) 3d (0.01) 5p (0.01) |
| Se | 0.30 | [core]4S (1.82) 4p (3.86) 4d (0.01) 6p (0.01) |
| Te | 0.33 | [core]5S (1.85) 5p (3.80) 5d (0.01) 7p (0.01) |
Table 3. NICS results of C
5Ch
5.
| C5O5 | C5S5 | C5Se5 | C5Te5 |
| NICS | 21.95 | 35.80 | 7.62 | 5.81 |
Table 4. NICS results of C
6Ch
6.
| C6O6 | C6S6 | C6Se6 | C6Te6 |
| NICS | 17.56 | −1.31 | −1.58 | −7.19 |
Table 5. Bond order results of C
5Ch
5| Ch | C-Ch | C-C |
| O | 1.87 | 0.91 |
| S | 1.75 | 1.04 |
| Se | 1.38 | 1.17 |
| Te | 1.25 | 1.21 |
Table 6. Bond order results of C
6Ch
6.
| Ch | C-Ch | C-C |
| O | 1.89 | 0.91 |
| S | 1.48 | 1.14 |
| Se | 1.38 | 1.18 |
| Te | 0.97 | 1.36 |
参考文献
- [1]
G. Seitz, P. Imming, Chem. Rev., 92, 1227 (1992).
- [2]
M. Gholami, R. R. Tykwinski, Chem. Rev., 106, 4997 (2006).
- [3]
X. Bao, X. Zhou, C. Flener Lovitt, A. Venkatraman, D. A. Hrovat, R. Gleiter, R. Hoffmann, W. T. Borden, J. Am. Chem. Soc., 134, 10259 (2012).
- [4]
J.-C. Guo, G.-L. Hou, S.-D. Li, X.-B. Wang, J. Phys. Chem. Lett., 3, 304 (2012).
- [5]
J. Liu, X. Bao, D. A. Hrovat, W. T. Borden, J. Org. Chem., 80, 11788 (2015).
- [6]
C. Domene, P. W. Fowler, L. W. Jenneskens, E. Steiner, Chemistry, 13, 269 (2007).
- [7]
P. Pyykkö, Chem. Rev., 88, 563 (1988).
- [8]
P. P. Power, Nature, 463, 171 (2010).
- [9]
S. Nagase, Acc. Chem. Res., 28, 469 (1995).
- [10]
L. Li, T. Fukawa, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, Nat. Chem., 4, 361 (2012).
- [11]
M. Miyasato, T. Sagami, M. Minoura, Y. Yamamoto, K. Y. Akiba, Chemistry, 10, 2590 (2004).
- [12]
M. Minoura, T. Sagami, K. Akiba, Organomet., 20, 2437 (2001).
- [13]
M. Minoura, T. Mukuda, T. Sagami, K. Akiba, J. Am. Chem. Soc., 121, 10852 (1999).
- [14]
P. R. Schleyer, J. Am. Chem. Soc., 118, 6317 (1996).
- [15]
Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, Pv. Schleyer, Chem. Rev., 105, 3842 (2005).
- [16]
<http://www.gaussian.com/>. Gaussian09 Revision D. 01.3.
- [17]
Exploring Chemistry with Electronic Structure Methods, 2nd, Ed., Gaussian Inc. (1994).
- [18]
S. Grimme, J. Comput. Chem., 27, 1787 (2006).
- [19]
<https://bse.pnl.gov/bse/portal>.
- [20]
A. D. Becke, J. Chem. Phys., 98, 5648 (1993).