Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Full papers
Study on cross-material property prediction of mineralizer fiber ceramic core materials based on deep learning
Qing ZhuYikui XieWeidong XuanSongzhe XuZhongming Ren
著者情報
ジャーナル オープンアクセス

2025 年 133 巻 11 号 p. 693-702

詳細
抄録

In this study, silicon-based ceramic cores were prepared using aluminum silicate fiber and mullite fiber as mineralizing agents through injection molding. A comprehensive properties evaluation model was proposed, optimizing the weight coefficient. The back-propagation (BP) neural networks were employed to predict the effects of different mineralizers on ceramic core properties, establishing a cross-material property mapping and prediction model. The results showed an abnormal increase in mean square error with the addition of 1 wt.% aluminum silicate fiber, indicating complex material behavior. Blending model predictions demonstrated the neural network’s strong capability in cross-material property prediction. The predictions closely matched experimental results, confirming the model’s accuracy.

著者関連情報
© 2025 The Ceramic Society of Japan

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top