Zairyo-to-Kankyo
Online ISSN : 1881-9664
Print ISSN : 0917-0480
ISSN-L : 0917-0480
海水中における軟鋼および硬鋼線材の表面疲労き烈成長挙動に及ぼす温度, くり返し速度, および鋼強度の影響
鈴木 揚之助元田 慎一伊藤 文雄辻川 茂男
著者情報
ジャーナル フリー

2002 年 51 巻 11 号 p. 502-509

詳細
抄録

The investigation of surface fatigue crack growth behavior in sea water was made for low carbon steel wire SWRM 22K, and also high carbon steel wires SWRH 32 and SWRH 42A in comparison with the previous test results of low carbon steel wire SWRM 10 by measuring crack growth rates and examining fracture surface of specimens, varying the testing frequency from 0.09Hz to 15Hz and the temperature from 288K to 308K. The crack growth rates for the tested steels in air were nearly identical in relatively low ΔK region. A particular frequency was found at which the environmental acceleration factor, (dl/dN)cf/(dl/dN))air, at ΔK of 5.5MN·m-3/2 was maximum. The maximum acceleration factor increased as the temperature decreased from 308K to 288K for each steel, and increased as the tensile strength (σB) of tested steels increased in order of SWRM 10, SWRM 22K, SWRH 32, and SWRH 42A. The acceleration factor decreased as the testing frequencies increased above the particular frequencies and decreased as the testing frequencies decreased below it for each steel. When tested at lower frequencies, there appeared a critical frequency, at or below which the rate of crack growth in sea water slowed down and finally stopped for each steel. This critical frequency increased as the temperature increased from 298K to 308K for each steel, and decreased as σB of tested steels increased in order of SWRM 10, SWRM 22K, SWRH 32, and SWRH 42A. These observations can be explained reasonably by crack tip blunting caused by dissolution in sea water.

著者関連情報
© 社団法人腐食防食協会
前の記事 次の記事
feedback
Top