Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on NIED Frontier Research on Science and Technology for Disaster Risk Reduction and Resilience 2018
Introducing Quantile Mapping to a Regression Model Using a Multi-Model Ensemble to Improve Probabilistic Projections of Monthly Precipitation
Noriko N. IshizakiKoji DairakuGenta Ueno
著者情報
ジャーナル オープンアクセス

2018 年 13 巻 5 号 p. 873-878

詳細
抄録

A new method was proposed for the probabilistic projection of future climate that introduced quantile mapping to a regression method using a multi-model ensemble (QM_RMME). Results of this method were then compared with those of the traditional regression method (RMME). Six stations in Japan where 100 year observation records were available were used to evaluate the performance of the methods. An initial 50-year period (1901–1950) was used to develop the regression models and the final period (1951–2000) was used for evaluation. Results showed that the estimation errors at the 50th and 90th percentile were smaller for QM_RMME as compared to RMME at most sites. Conversely, when the model development and evaluation periods were limited to 20 years (1901–1920 and 1951–1970, respectively), the 90th percentile error was larger for QM_RMME. This was attributed to quantile mapping resulting in over-fitting of the data during the model development period. Furthermore, the QM_RMME error increased when the difference of observations between the model development and verification periods was large. Therefore, results indicated that the RMME method was more stable for relatively short data verification periods.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR Official Site.
https://www.fujipress.jp/jdr/dr-about/
前の記事 次の記事
feedback
Top