日本金属学会誌
Online ISSN : 1880-6880
Print ISSN : 0021-4876
ISSN-L : 0021-4876
論文
高エネルギー電子線照射による銅-チタン合金の硬度と導電率の改質
岩瀬 彰宏藤村 勇貴千星 聡斎藤 勇一堀 史説
著者情報
ジャーナル フリー HTML

2024 年 88 巻 3 号 p. 48-52

詳細
抄録

We performed 1.5 MeV electron-irradiation at 333 K and 533 K for Cu-4.2 at% Ti alloy with a single phase of super-saturated solid solution, and investigated the irradiation-induced changes in Vickers hardness and electrical conductivity. With increasing the electron fluence, both of the hardness and the electrical conductivity increase. Such phenomena can be ascribed to the formation of Ti-rich precipitates that are caused by irradiation-enhanced diffusion of Ti atoms. The increase in electrical conductivity is caused by the reduction of Ti content in Cu matrix because of the formation of Ti-rich precipitates. The increase in hardness is also caused by Ti-rich precipitates that are effective obstacles against the motions of dislocations. We found a clear correlation between the irradiation-induced change in the hardness, ΔHv and change in electrical resistivity, Δρ, or that in electrical conductivity, Δσ, as ΔHv ∝ √-Δρ, or ΔHv ∝ √Δσ/σ, irrespective of irradiation temperatures. This correlation suggests that the precipitate-cutting mechanism governs the irradiation-induced increase in hardness; that is, 1.5 MeV electron-irradiation at relatively low temperatures of 333 K to 533 K should promote the nucleation of fine Ti-rich precipitates preferentially rather than the growth of them. The present result shows that energetic electron irradiation is a good tool to improve the mechanical and electrical properties of Cu-Ti alloys.

 

Mater. Trans. 64 (2023) 2232-2236に掲載

Fullsize Image
著者関連情報
© 2024 (公社)日本金属学会
前の記事 次の記事
feedback
Top