人間工学
Online ISSN : 1884-2844
Print ISSN : 0549-4974
ISSN-L : 0549-4974
2E01 コミュニケーション1
Deploying YOLO Models on HoloLens 2: Balancing Performance and Efficiency in AR Applications
Pei-Chun ChenYing-Yin Huang
著者情報
ジャーナル フリー

2025 年 61 巻 Supplement 号 p. 2E01-01

詳細
抄録

This study explores deploying efficient YOLO object detection models on the Microsoft HoloLens 2, an advanced augmented reality (AR) device. The HoloLens 2's limited computational power, memory, and energy efficiency present challenges for implementing AI models like YOLO. We focus on optimizing FPS and model performance to ensure seamless AR interactions, addressing these resource constraints while enhancing the user experience.

著者関連情報
© 2025 Japan Human Factors and Ergonomics Society
前の記事 次の記事
feedback
Top