日本感性工学会論文誌
Online ISSN : 1884-5258
ISSN-L : 1884-0833

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

畳み込みニューラルネットワークを用いた自動車の三次元モデルにおける各車型の特徴抽出と視覚化
田中 俊太朗原田 利宣小野 謙二
著者情報
ジャーナル フリー 早期公開

論文ID: TJSKE-D-18-00039

この記事には本公開記事があります。
詳細
抄録
The cars are classified by cars' body types. However the characteristics are basically similar at first sight, so it is difficult to distinguish the differences among those cars' body types. Therefore, in this study, we considered that cars' characteristics could be analyzed by using deep learning and image recognition technology, developed a system to visualize the judgment and characteristic parts of cars' body types. Specifically, we made renderings of the CG model of 30 cars by setting 360 viewpoints in 1 degree increments around each car. Deep learning was performed using these 2D images as teacher signals. The car body type recognition probability of each angle is graphed, and the characteristic parts of each car body type are visualized. As a result, we clarified the visual angles and the pars contributing the judgment of cars' body types.
著者関連情報
© 2018 日本感性工学会
feedback
Top