日本感性工学会論文誌
Online ISSN : 1884-5258
ISSN-L : 1884-0833

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

吹奏楽器演奏者5名が楽譜を吹奏楽器での吹奏時に推定したテンポの深層ニューラルネットワークによる模擬
川村 暁劉 忠達村上 武渡郶 謙一長谷川 正規牛渡 克之吉田 等明
著者情報
ジャーナル フリー 早期公開

論文ID: TJSKE-D-23-00042

この記事には本公開記事があります。
詳細
抄録

Sound is generated by Kansei information processing performed by an instrumentalist playing a musical score. To construct datasets for Kansei information processing of musical scores, we have performed subjects’ experiments using melodies extracted from some sets of music scores. All Japan Band Contests have a lot of pieces of music, and they are all selected as the required pieces, so we extracted the melodies from them and made a set of music scores for the subject experiment. The results of five subjects’ experiments show that the subjects’ estimated tempo differs. Furthermore, the tempo estimated by the subject from the score was defined as a 2-class classification problem of fast or slow tempo and simulated by a deep neural network. The recognition rate of the training data was more than 99.8% for all subjects’ datasets, but the recognition rate of the evaluation data varied from 90.3% to 77.4%.

著者関連情報
© 2023 日本感性工学会
feedback
Top