精密工学会誌
Online ISSN : 1882-675X
Print ISSN : 0912-0289
ISSN-L : 0912-0289
論文
Active Learningにおける不確実サンプル選択によるアノテーション効率化
川野 恭史野田 祥希望月 凜平青木 義満
著者情報
ジャーナル フリー

2022 年 88 巻 2 号 p. 211-216

詳細
抄録

Active learning refers to label-efficient algorithms that use the most representative samples for labeling when creating training data. In this paper, we propose a model that derives the most informative unlabeled samples from the output of a task model. The tasks are a classification problem, multi-label classification and a semantic segmentation problem. The model consists of an uncertainty indicator generator and a task model. After training the task model with labeled samples, the model predicts unlabeled samples, and based on the prediction results, the uncertainty indicator generator outputs an uncertainty indicator for each unlabeled sample. Samples with a higher uncertainty indicator are considered to be more informative and selected. As a result of experiments using multiple datasets, our model achieved better accuracy than conventional active learning methods and reduced execution time by a factor of 10.

著者関連情報
© 2022 公益社団法人 精密工学会
前の記事
feedback
Top