粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
研究論文
畳み込みニューラルネットワークを用いた深層学習による微構造写真からのWC-FeAlの硬さ,破壊靭性予測
古嶋 亮一丸山 豊
著者情報
ジャーナル オープンアクセス

2023 年 70 巻 7 号 p. 326-335

詳細
抄録

The mechanical properties, such as Vickers hardness and crack length, of various WC-FeAl hard materials were predicted using deep learning via a convolutional neural network (CNN) trained on microstructures. The accuracy of the predictions was verified using gradient-weighted class activation mapping (Grad-CAM), which is a kind of image visualization technology that identifies important structural features for AI classification based on mechanical properties. The accuracies, expressed as coefficients of determination for unknown samples (test data), were found to be 0.89 and 0.75 at most for Vickers hardness and crack length, respectively. The AI correctly recognized microstructural quality and determined classes that represented differences in mechanical properties as evidenced by the feature maps obtained, indicating that CNN prediction was a powerful tool for analyzing WC-FeAl hard materials.

著者関連情報
© 2023 一般社団法人粉体粉末冶金協会

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top