日本統計学会誌
Online ISSN : 2189-1478
Print ISSN : 0389-5602
ISSN-L : 0389-5602
MOMENTS OF A RANK VECTOR WITH APPLICATIONS TO SELECTION AND RANKING
Takashi Matsui
著者情報
ジャーナル フリー

1985 年 15 巻 1 号 p. 7-15

詳細
抄録
Let k populations πi be given with a continuous cumulative distribution function Fi(x), i=1, 2, …, k. Also let X1, X2, …, Xk be a set of mutually independent observations from respective populations π1. π2, …, πk. A rank vector R=(R1, R2, …, Rk) is defined for these observations as follows: Ri=s if Xi is the s-th smallest of the variables X1, X2, …, Xk. The purpose of this paper is to give the mean, variance and covariance of rank vector R under the population model stated above. Applications to the slippage configuration of distributions and the normal distribution are also given.
著者関連情報
© Japan Statistical Society
前の記事 次の記事
feedback
Top