Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data
Reinhard FarwigHideo KozonoHermann Sohr
著者情報
ジャーナル フリー

2007 年 59 巻 1 号 p. 127-150

詳細
抄録
We investigate the nonstationary Navier-Stokes equations for an exterior domain Ω⊂R3 in a solution class Ls (0,T;Lq(Ω)) of very low regularity in space and time, satisfying Serrin's condition $¥frac{2}{s}$+$¥frac{3}{q}$=1 but not necessarily any differentiability property. The weakest possible boundary conditions, beyond the usual trace theorems, are given by u|∂Ω=gLs (0,T;W-1/q,q(∂Ω)), and will be made precise in this paper. Moreover, we suppose the weakest possible divergence condition k=divuLs(0,T;Lr(Ω)), where $¥frac{1}{3}$+$¥frac{1}{q}$=$¥frac{1}{r}$.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2007 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top