Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Pencil genus for normal surface singularities
Tadashi Tomaru
著者情報
ジャーナル フリー

2007 年 59 巻 1 号 p. 35-80

詳細
抄録
Let (X,o) be a normal complex surface singularity. We define an invariant pe(X,o) for (X,o) in terms of pencils of compact complex curves. Similarly, for a pair of (X,o) and h∈$¥mathfrak m$X,o (the maximal ideal of $¥mathscr{O}$X,o), we define an invariant pe(X,o,h). We call pe(X,o) (resp. pe(X,o,h)) the pencil genus of (X,o) (resp. a pair of (X,o) and h). In this paper, we give a method to construct pencils of compact complex curves by gluing a resolution space of (X,o) and resolution spaces of some cyclic quotient singularities. Using this, we prove some formulae on pe(X,o,h) and estimate pe(X,o). We also characterize Kodaira singularities in terms of pe(X,o,h).
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2007 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top