Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
A mathematical theory of the Feynman path integral for the generalized Pauli equations
Wataru Ichinose
著者情報
ジャーナル フリー

2007 年 59 巻 3 号 p. 649-668

詳細
抄録
The definitions of the Feynman path integral for the Pauli equation and more general equations in configuration space and in phase space are proposed, probably for the first time. Then it is proved rigorously that the Feynman path integrals are well-defined and are the solutions to the corresponding equations. These Feynman path integrals are defined by the time-slicing method through broken line paths, which is familiar in physics. Our definitions of these Feynman path integrals and our results give the extension of ones for the Schrödinger equation.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2007 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top