Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
On vanishing of certain Ext modules
Shiro GotoFutoshi HayasakaRyo Takahashi
著者情報
ジャーナル フリー

2008 年 60 巻 4 号 p. 1045-1064

詳細
抄録
Let R be a Noetherian local ring with the maximal ideal \mathfrak{m} and dim R = 1. In this paper, we shall prove that the module Ext1R (R/Q, R) does not vanish for every parameter ideal Q in R, if the embedding dimension \mathrm{v}(R) of R is at most 4 and the ideal \mathfrak{m}2 kills the 0^{\underline{th}} local cohomology module H\mathfrak{m}0(R). The assertion is no longer true unless v(R) ≤ 4. Counterexamples are given. We shall also discuss the relation between our counterexamples and a problem on modules of finite G-dimension.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2008 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top