Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
A theorem of Hadamard-Cartan type for Kähler magnetic fields
Toshiaki Adachi
著者情報
ジャーナル フリー

2012 年 64 巻 3 号 p. 969-984

詳細
抄録
We study the global behavior of trajectories for Kähler magnetic fields on a connected complete Kähler manifold M of negative curvature. Concerning these trajectories we show that theorems of Hadamard-Cartan type and of Hopf-Rinow type hold: If sectional curvatures of M are not greater than c (< 0) and the strength of a Kähler magnetic field is not greater than $¥sqrt{|c|}$, then every magnetic exponential map is a covering map. Hence arbitrary distinct points on M can be joined by a minimizing trajectory for this magnetic field.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2012 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top