Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
The Bishop-Phelps-Bollobás property for bilinear forms and polynomials
María D. AcostaJulio Becerra-GuerreroYun Sung ChoiDomingo GarcíaSun Kwang KimHan Ju LeeManuel Maestre
著者情報
ジャーナル フリー

2014 年 66 巻 3 号 p. 957-979

詳細
抄録
For a σ-finite measure μ and a Banach space Y we study the Bishop-Phelps-Bollobás property (BPBP) for bilinear forms on L1(μ) × Y, that is, a (continuous) bilinear form on L1(μ) × Y almost attaining its norm at (f0, y0) can be approximated by bilinear forms attaining their norms at unit vectors close to (f0, y0). In case that Y is an Asplund space we characterize the Banach spaces Y satisfying this property. We also exhibit some class of bilinear forms for which the BPBP does not hold, though the set of norm attaining bilinear forms in that class is dense.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2014 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top