Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Positive energy representations of double extensions of Hilbert loop algebras
Timothée MarquisKarl-Hermann Neeb
著者情報
ジャーナル フリー

2017 年 69 巻 4 号 p. 1485-1518

詳細
抄録

A real Lie algebra with a compatible Hilbert space structure (in the sense that the scalar product is invariant) is called a Hilbert–Lie algebra. Such Lie algebras are natural infinite-dimensional analogues of the compact Lie algebras; in particular, any infinite-dimensional simple Hilbert–Lie algebra 𝔨 is of one of the four classical types AJ, BJ, CJ or DJ for some infinite set J. Imitating the construction of affine Kac–Moody algebras, one can then consider affinisations of 𝔨, that is, double extensions of (twisted) loop algebras over 𝔨. Such an affinisation 𝔤 of 𝔨 possesses a root space decomposition with respect to some Cartan subalgebra 𝔥, whose corresponding root system yields one of the seven locally affine root systems (LARS) of type AJ(1), BJ(1), CJ(1), DJ(1), BJ(2), CJ(2) or BCJ(2).

Let D ∈ der(𝔤) with 𝔥 ⊆ ker D (a diagonal derivation of 𝔤). Then every highest weight representation (ρλ, L(λ)) of 𝔤 with highest weight λ can be extended to a representation $\widetilde{\rho}_{\lambda}$ of the semi-direct product 𝔤 ⋊ ℝ D. In this paper, we characterise all pairs (λ,D) for which the representation $\widetilde{\rho}_{\lambda}$ is of positive energy, namely, for which the spectrum of the operator $-i \widetilde{\rho}_{\lambda}(D)$ is bounded from below.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top