Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Asymptotic behavior of eigenfrequencies of a thin elastic rod with non-uniform cross-section
Shuichi JimboAlbert Rodríguez Mulet
著者情報
ジャーナル フリー

2020 年 72 巻 1 号 p. 119-154

詳細
抄録

We study the eigenvalue problem of the elliptic operator which arises in the linearized model of the periodic oscillations of a homogeneous and isotropic elastic body. The square of the frequency agrees to the eigenvalue. Particularly, we deal with a thin rod with non-uniform connected cross-section in several cases of boundary conditions. We see that there appear many small eigenvalues which accumulate to 0 as the thinness parameter 𝜀 tends to 0. These eigenvalues correspond to the bending mode of vibrations of the thin body. We investigate the asymptotic behavior of these eigenvalues and obtain a characterization formula of the limit equation for 𝜀 → 0.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2020 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top