Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Volume growth of Kähler–Einstein metric over quasi-projective manifolds with boundary of maximal or minimal Kodaira dimension
Shin Kikuta
著者情報
ジャーナル 認証あり

2026 年 78 巻 1 号 p. 243-273

詳細
抄録

In this paper, we make some progress about a boundary behavior of the almost-complete Kähler–Einstein metric of negative Ricci curvature on a quasi-projective manifold with semiample log-canonical bundle. First its volume growth near the boundary is investigated in terms of the Kodaira dimension of the boundary, and then we characterize the boundary to be of general type via the volume growth. Moreover the volume growth is determined in the case of a Calabi–Yau boundary. We also affirmatively solve a modified version of the conjecture suggested previously by the author about the residue of the Kähler–Einstein metric if the boundary is a smooth finite quotient of an abelian variety.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2026 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top