Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Almost refinement, reaping, and ultrafilter numbers
Jörg BrendleMichael HrušákFrancesco Parente
著者情報
ジャーナル 認証あり

2026 年 78 巻 1 号 p. 275-295

詳細
抄録

We investigate the combinatorial structure of the set of maximal antichains in a Boolean algebra ordered by almost refinement. We also consider the reaping relation and its associated cardinal invariants, focusing in particular on reduced powers of Boolean algebras. As an application, we obtain that, on the one hand, the ultrafilter number of the Cohen algebra is greater than or equal to the cofinality of the meagre ideal and, on the other hand, a suitable parametrized diamond principle implies that the ultrafilter number of the Cohen algebra is equal to ℵ1.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2026 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top