訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Mathematics 22, Springer, Berlin-Heidelberg-New York, 1966. 2) N. Boboc, C. Constantinescu and A. Cornea, Axiomatic theory of harmonic functions-Nonnegative superharmonic functions, Ann. Inst. Fourier, 15-1 (1965), 283-312. 3) N. Boboc, C. Constantinescu and A. Cornea, Semigroups of transitions on harmonic spaces, Rev. Roumaine Math. Pures Appl., 12-6 (1967), 763-805. 4) N. Boboc et P. Mustata, Espaces harmoniques associés aux opérateurs différentials linéaires du second ordre de type elliptique, Lecture Notes in Mathematics 68, Springer, Berlin-Heidelberg-New York, 1968. 5) N. Bourbaki, Topologie générale, Hermann, Paris, 1964. 6) N. Bourbaki, Espaces vectoriels topologiques, Hermann, Paris, 1964. 7) C. Constantinescu und A. Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihre Grenzgebiete 32, Springer, Berlin-Göttingen-Heidelberg, 1963. 8) K. Gowrisankaran, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier, 13-2 (1963), 307-356. 9) W. Hansen, Charakterisierung von Familien exzessiver Funktionen, Invent. Math., 5 (1968), 335-348. 10) R. M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiels, Ann. Inst. Fourier, 12 (1962), 415-571. 11) T. Kori, Axiomatic treatment of fullsuperharmonic functions and submarkov resolvents, Proc. Japan Acad., 44 (1968), 981-986. 12) T. Kori, Fullsuperharmonic functions and excessive functions, USSR-Japan symposium on probability held at Xabarovsk (1969). 13) Z. Kuramochi, Mass distributions on the ideal boundaries of abstract Riemann surfaces II, Osaka Math. J., 8 (1956), 145-186. 14) P. A. Loeb and B. Walsh, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, 15 (1965), 597-600. 15) F. Y. Maeda, Axiomatic treatment of fullsuperharmonic functions, J. Sci. Hiroshima Univ., Ser. A-1, 30 (1966), 197-215. 16) F. Y. Maeda, Kuramochi Boundaries of Riemann surfaces, Lecture Notes in Mathematics 58, Springer, Berlin-Heidelberg-New York, 1968. 17) P. A. Meyer, Probabilités et potentiel, Hermann, Paris, 1966. 18) P. A. Meyer, Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory, Ann. Inst. Fourier, 13-2 (1963), 357-372. 19) K. R. Parthasarathy, Probability measures on metric spaces, Academic press, New York-London, 1967. 20) R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, 1965. 21) H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966.
Right : [1] H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Mathematics 22, Springer, Berlin-Heidelberg-New York, 1966. [2] N. Boboc, C. Constantinescu and A. Cornea, Axiomatic theory of harmonic functions-Nonnegative superharmonic functions, Ann. Inst. Fourier, 15-1 (1965), 283-312. [3] N. Boboc, C. Constantinescu and A. Cornea, Semigroups of transitions on harmonic spaces, Rev. Roumaine Math. Pures Appl., 12-6 (1967), 763-805. [4] N. Boboc et P. Mustata, Espaces harmoniques associés aux opérateurs différentials linéaires du second ordre de type elliptique, Lecture Notes in Mathematics 68, Springer, Berlin-Heidelberg-New York, 1968. [5] N. Bourbaki, Topologie générale, Hermann, Paris, 1964. [6] N. Bourbaki, Espaces vectoriels topologiques, Hermann, Paris, 1964. [7] C. Constantinescu und A. Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihre Grenzgebiete 32, Springer, Berlin-Göttingen-Heidelberg, 1963. [8] K. Gowrisankaran, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier, 13-2 (1963), 307-356. [9] W. Hansen, Charakterisierung von Familien exzessiver Funktionen, Invent. Math., 5 (1968), 335-348. [10] R. M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiels, Ann. Inst. Fourier, 12 (1962), 415-571. [11] T. Kori, Axiomatic treatment of fullsuperharmonic functions and submarkov resolvents, Proc. Japan Acad., 44 (1968), 981-986. [12] T. Kori, Fullsuperharmonic functions and excessive functions, USSR-Japan symposium on probability held at Xabarovsk (1969). [13] Z. Kuramochi, Mass distributions on the ideal boundaries of abstract Riemann surfaces II, Osaka Math. J., 8 (1956), 145-186. [14] P. A. Loeb and B. Walsh, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, 15 (1965), 597-600. [15] F. Y. Maeda, Axiomatic treatment of fullsuperharmonic functions, J. Sci. Hiroshima Univ., Ser. A-1, 30 (1966), 197-215. [16] F. Y. Maeda, Kuramochi Boundaries of Riemann surfaces, Lecture Notes in Mathematics 58, Springer, Berlin-Heidelberg-New York, 1968. [17] P. A. Meyer, Probabilités et potentiel, Hermann, Paris, 1966. [18] P. A. Meyer, Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory, Ann. Inst. Fourier, 13-2 (1963), 357-372. [19] K. R. Parthasarathy, Probability measures on metric spaces, Academic press, New York-London, 1967. [20] R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, 1965. [21] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966.