1) Department of Mathematics Faculty of General Education Tokyo University of Agriclture and Technology
2) Department of Mathematics Faculty of Science Tokyo University of Education
訂正後 :
1) Department of Mathematics Faculty of General Education Tokyo University of Agriculture and Technology
2) Department of Mathematics Faculty of Science Tokyo University of Education
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Right : [1] A. Borel, Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U. S. A., 76 (1954), 273-342. [2] A. Borel, On the curvature tensor of the Hermitian symmetric manifolds, Ann. of Math., 71 (1960), 508-521. [3] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538. [4] A. Borel and A. Weil, Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts, Séminaire Bourbaki (Exposé by J. P. Serre): 1954. [5] E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math., 58 (1953), 1-23. [6] E. Calabi and E. Vesentini, On compact, locally symmetric Kähler manifolds, Ann. of Math., 71 (1960), 472-507. [7] E. Cartan, Les groupes projectifs qui ne laissent invaiante aucune multiplicité plane, Oeuvres Complètes, 1-I, 355-398. [8] S. S. Chern, On Einstein hypersurfaces in a Kaehlerian manifold of constant holomorphic sectional curvature, J. Differential Geometry, 1 (1967), 21-31. [9] E. B. Dynkin, The maximal subgroups on the classical groups, Amer. Math. Soc. Transl. Ser. 2, 6 (1957), 245-378. [10] H. Freudenthal and H. de Vries, Linear Lie groups, Academic Press, 1969, New York-London. [11] M. Goto, On algebraic homogeneous spaces, Amer. J. Math., 76 (1954), 811-818. [12] P. A. Griffiths, Some geometric and analytic properties of homogeneous complex manifolds, Acta Math., 110 (1963), 157-208. [13] J. Hano, Einstein complete intersections in complex projective space, Math. Ann., 216 (1975), 197-208. [14] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York-London, 1962. [15] M. Ise, The theory of symmetric spaces II, Sûgaku, 13 (1961), 88-107 (in Japanese). [16] M. Kon, On some complex submanifolds in Kaehler manifolds, Canad. J. Math., 26 (1974), 1442-1449. [17] S. Murakami, Cohomology groups of vector-valued forms on symmetric spaces, Lecture notes, Univ. of Chicago, 1966. [18] H. Nakagawa, Einstein Kaehler manifolds immersed in a complex projective space, Canad. J. Math., 28 (1976), 1-8. [19] H. Nakagawa and K. Ogiue, Complex space forms immersed in complex space forms, Trans. Amer. Math. Soc., 219 (1976), 289-297. [20] K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces II, J. Math. Soc. Japan, 20 (1968), 498-521. [21] K. Ogiue, Positively curved complex submanifolds immersed in a complex projective space II, Hokkaido J. Math., 1 (1972), 16-20. [22] K. Ogiue, Differential geometry of Kaehler submanifolds, Advances in Math., 13 (1974), 73-114. [23] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85 (1967), 246-266. [24] T. Takahashi, Hypersurfaces with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J. Math. Soc. Japan, 19 (1967), 199-204. [25] M. Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka J. Math., 10 (1973), 441-475. [26] J. Tits, Sur certaines classes d'espaces homogènes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mem. Coll., 29 (1955), 1-268. [27] J. Tits, Espaces homogènes complexes compacts, Comment. Math. Helv., 37 (1962/63), 111-120. [28] H. C. Wang, Closed manifolds with homogeneous complex structures, Amer. J. Math., 76 (1954), 1-32. [29] J. A. Wolf, On the classification of hermitian symmetric spaces, J. Math. Mech., 13 (1964), 489-495. [30] J. A. Wolf and A. Korányi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939. [31] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, 1965.