訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. IHES, 25 (1965), 81-130. 2) V. I. Arnold, Bifurcations of invariant manifolds of differential equations and normal forms in neighborhoods of elliptic curves, Funkcional. Anal. i. Prilozen., 10 (1976), 1-12. (English translation, Functional Anal. Appl., 10 (1977), 249-259). 3) H. Grauert, über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146 (1962), 331-368. 4) H. Grauert, Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z., 81 (1963), 377-391. 5) L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, 1966. 6) H. Kazama, ∂ Cohomology of (H, C)-groups, Publ. RIMS, Kyoto Univ., 20 (1984), 297-317. 7) H. Kazama and K. H. Shon, ∂-Problem on a family of weakly pseudoconvex manifolds, Proc. Japan Acad., 62 (1986), 19-20. 8) H. Kazama and T. Umeno, Complex abelian Lie groups with finite-dimensional cohomology groups, J. Math. Soc. Japan, 36 (1984), 91-106. 9) J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds I. II., Ann. Math., 78 (1963), 112-148; ibid, 79 (1964), 450-472. 10) B. Malgrange, La cohomologie d'une variété analytique complexe à bord pseudoconvexen'est pas nécessairement séparée, C. R. Acad. Sci. Paris, 280 (1975), 93-95. 11) J. Morrow and K. Kodaira, Complex manifolds, Holt, Rinehart and Winston Inc., 1971. 12) T. Ueda, On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., 22 (1983), 583-607. 13) C. Vogt, Line bundles on toroidal groups, J. Reine Angew. Math., 335 (1982), 197-215. 14) C. Vogt, Two remarks concerning toroidal groups, Manuscripta Math., 41 (1983), 217-232.
Right : [1] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. IHES, 25 (1965), 81-130. [2] V. I. Arnold, Bifurcations of invariant manifolds of differential equations and normal forms in neighborhoods of elliptic curves, Funkcional. Anal. i. Prilozen., 10 (1976), 1-12. (English translation, Functional Anal. Appl., 10 (1977), 249-259). [3] H. Grauert, über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146 (1962), 331-368. [4] H. Grauert, Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z., 81 (1963), 377-391. [5] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, 1966. [6] H. Kazama, ∂ Cohomology of (H, C)-groups, Publ. RIMS, Kyoto Univ., 20 (1984), 297-317. [7] H. Kazama and K. H. Shon, ∂-Problem on a family of weakly pseudoconvex manifolds, Proc. Japan Acad., 62 (1986), 19-20. [8] H. Kazama and T. Umeno, Complex abelian Lie groups with finite-dimensional cohomology groups, J. Math. Soc. Japan, 36 (1984), 91-106. [9] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds I. II., Ann. Math., 78 (1963), 112-148; Ann. Math., 79 (1964), 450-472. [10] B. Malgrange, La cohomologie d'une variété analytique complexe à bord pseudoconvexe n'est pas nécessairement séparée, C. R. Acad. Sci. Paris, 280 (1975), 93-95. [11] J. Morrow and K. Kodaira, Complex manifolds, Holt, Rinehart and Winston Inc., 1971. [12] T. Ueda, On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., 22 (1983), 583-607. [13] C. Vogt, Line bundles on toroidal groups, J. Reine Angew. Math., 335 (1982), 197-215. [14] C. Vogt, Two remarks concerning toroidal groups, Manuscripta Math., 41 (1983), 217-232.