訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) D. R. Adams, Traces and potentials arising from translation invariant operators, Ann. Scuola Norm. Sup., Pisa, 25(1971), 203-217. 2) D. R. Adams, A trace inequality for generalized potentials, Studia Math., 48 (1973), 139-158. 3) D. R. Adams, Traces of potentials II, Indiana Univ. Math. J., 22 (1973), 907-918. 4) D. R. Adams and N. G. Meyers, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J., 22 (1972), 169-197. 5) L. Carleson, Selected problems on exceptional sets, Toronto-London-Melbourne: Van Norstrand Co., 1967. 6) G. Choquet, Theory of capacities, Ann. Inst. Fourier, 5 (1955), 131-295. 7) H. Federer, Geometric measure theory, Springer, 1969. 8) H. Federer and W. P. Ziemer, The Lebesgue set of a function whose distribution derivatives are p-th power summable, Indiana Univ. Math. J., 22 (1972), 139-158. 9) D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second edition, Springer, 1983. 10) L. I. Hedberg and T. H, Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier, 33 (1983), 161-187. 11) T. Horiuchi, On the relative p-capacity and its applications to the degenerated elliptic equations, in preparation. 12) V. G. Maz'ja, Sobolev spaces, Springer, 1985. 13) V. G. Maz'ja and V. P. Havin, A nonlinear analogue of the Newton potential and metric properties of the (p, l)-capacity, Soviet Math. Dokl., 11 (1970), 1294-1298. 14) V. G. Maz'ja and V. P. Havin, Nonlinear potential theory, Russian Math. Surveys, 27 (1972), 71-148. 15) N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue class, Math. Scand., 26 (1970), 255-292. 16) E. W. Stredulinsky, Weighted inequalities and degenerated elliptic partial differential equations. Lecture Note in Mathematics, 1074 (1984) Springer.
Right : [1] D. R. Adams, Traces and potentials arising from translation invariant operators, Ann. Scuola Norm. Sup., Pisa, 25 (1971), 203-217. [2] D. R. Adams, A trace inequality for generalized potentials, Studia Math., 48 (1973), 139-158. [3] D. R. Adams, Traces of potentials II, Indiana Univ. Math. J., 22 (1973), 907-918. [4] D. R. Adams and N. G. Meyers, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J., 22 (1972), 169-197. [5] L. Carleson, Selected problems on exceptional sets, Toronto-London-Melbourne: Van Norstrand Co., 1967. [6] G. Choquet, Theory of capacities, Ann. Inst. Fourier, 5 (1955), 131-295. [7] H. Federer, Geometric measure theory, Springer, 1969. [8] H. Federer and W. P. Ziemer, The Lebesgue set of a function whose distribution derivatives are p-th power summable, Indiana Univ. Math. J., 22 (1972), 139-158. [9] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second edition, Springer, 1983. [10] L. I. Hedberg and T. H, Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier, 33 (1983), 161-187. [11] T. Horiuchi, On the relative p-capacity and its applications to the degenerated elliptic equations, in preparation. [12] V. G. Maz'ja, Sobolev spaces, Springer, 1985. [13] V. G. Maz'ja and V. P. Havin, A nonlinear analogue of the Newton potential and metric properties of the (p,l)-capacity, Soviet Math. Dokl., 11 (1970), 1294-1298. [14] V. G. Maz'ja and V. P. Havin, Nonlinear potential theory, Russian Math. Surveys, 27 (1972), 71-148. [15] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue class, Math. Scand., 26 (1970), 255-292. [16] E. W. Stredulinsky, Weighted inequalities and degenerated elliptic partial differential equations. Lecture Note in Mathematics, 1074 (1984) Springer.