訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin, 1976. 2) W. Borchers and H. Sohr, On the semigroup of the Stokes operator for exterior domains in Lq-spaces, Math. Z., 196 (1987), 415-425. 3) P. Deuring, The resolvent problem for the Stokes system in exterior domains: An elementary approach, Math. Methods Appl. Sci., 13 (1990), 335-349. 4) R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces, Math. Z., 211 (1992), 409-447. 5) R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607-643. 6) A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. 7) D. Fujiwara and H. Morimoto, An Lr-theorem of Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700. 8) J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985. 9) Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329. 10) Y. Giga and H. Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103-130. 11) V. Girault, The divergence, curl and Stokes operator in exterior domains in R3, Recent developments in theoretical fluid mechanics, (eds. G. P. Galdi and J. Necas), Pitman Research Notes in Mathematics, 291, New York, 1993, pp. 34-77. 12) H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346. 13) D. S. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 255 (1979), 343-362. 14) T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140. 15) G. de Rham, Variétés différentiables, Hermann, Paris, 1960. 16) E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874. 17) C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition in Lq-spaces for bounded and exterior domains, Advances in Math. for Appl. Sci., Vol. 11, World Scientific, Singapore, 1992. 18) V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math., 8 (1977), 467-529. 19) M. Specovius-Neugebauer, Die Stokes-Gleichung in Cantor-Räumen and die Holomorphie der Stokes-Halbgruppe in gewichteten Lp-Räumen, Dissertation, Paderborn, 1984. 20) M. Specovius-Neugebauer, Exterior Stokes problems and decay at infinity, Math. Methods Appl. Sci., 8 (1986), 351-367. 21) M. Specovius-Neugebauer, The Helmholtz decomposition of weighted Lr-spaces, Comm. Partial Differential Equations, 15 (1990), 273-288. 22) A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, Orlando, 1986. 23) H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. 24) W. von Wahl, Regularitätsfragen für instationären Navier-Stokes Gleichungen in höheren Dimensionen, J. Math. Soc. Japan, 32 (1980), 263-283. 25) W. von Wahl, Vorlesungen über das Außenraumproblem für die instationaren Gleichungen von Navier-Stokes, SFB 256, Vorlesungsreihe, no. 11, Univ. Bonn, 1989.
Right : [1] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin, 1976. [2] W. Borchers and H. Sohr, On the semigroup of the Stokes operator for exterior domains in Lq-spaces, Math. Z., 196 (1987), 415-425. [3] P. Deuring, The resolvent problem for the Stokes system in exterior domains: An elementary approach, Math. Methods Appl. Sci., 13 (1990), 335-349. [4] R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces, Math. Z., 211 (1992), 409-447. [5] R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607-643. [6] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. [7] D. Fujiwara and H. Morimoto, An Lγ-theorem of Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700. [8] J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985. [9] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329. [10] Y. Giga and H. Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103-130. [11] V. Girault, The divergence, curl and Stokes operator in exterior domains in R3, Recent developments in theoretical fluid mechanics, (eds. G. P. Galdi and J. Necas), Pitman Research Notes in Mathematics, 291, New York, 1993, pp. 34-77. [12] H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346. [13] D. S. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 255 (1979), 343-362. [14] T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140. [15] G. de Rham, Variétés différentiables, Hermann, Paris, 1960. [16] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874. [17] C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition in Lq-spaces for bounded and exterior domains, Advances in Math. for Appl. Sci., Vol. 11, World Scientific, Singapore, 1992. [18] V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math., 8 (1977), 467-529. [19] M. Specovius-Neugebauer, Die Stokes-Gleichung in Cantor-Räumen und die Holomorphie der Stokes-Halbgruppe in gewichteten Lp-Räumen, Dissertation, Paderborn, 1984. [20] M. Specovius-Neugebauer, Exterior Stokes problems and decay at infinity, Math. Methods Appl. Sci., 8 (1986), 351-367. [21] M. Specovius-Neugebauer, The Helmholtz decomposition of weighted Lγ-spaces, Comm. Partial Differential Equations, 15 (1990), 273-288. [22] A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, Orlando, 1986. [23] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. [24] W. von Wahl, Regularitätsfragen für instationären Navier-Stokes Gleichungen in höheren Dimensionen, J. Math. Soc. Japan, 32 (1980), 263-283. [25] W. von Wahl, Vorlesungen über das Außenraumproblem für die instationären Gleichungen von Navier-Stokes, SFB 256, Vorlesungsreihe, no. 11, Univ. Bonn, 1989.