訂正日: 2006/10/20訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : Asymptotic expansions and Stokes multipliers of the confluent hypergeometric function Φ2 II. Behaviour near (∞, ∞), in P1(C)×P1(C) Right : Asymptotic expansions and Stokes multipliers of the confluent hypergeometric function Φ2
訂正日: 2006/10/20訂正理由: -訂正箇所: 論文サブタイトル訂正内容: Right : II. Behaviour near (∞, ∞) in P1(C)×P1(C)
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) B. Dwork and F. Loeser, Hypergeometnc series, Japan. J. Math., 19 (1993), 81-129. 2) A. Erdélyi, Integration of a certain system of linear partial differential equations of hypergeometric type, Proc. Roy. Soc. Edinburgh, 59 (1939), 224-241. 3) A. Erdélyi, Some confluent hypergeometric functions of two variables, Proc. Roy. Soc. Edinburgh, 60 (1940), 344-361. 4) A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, vols. 1 and 2, McGraw-Hill, New York, 1953. 5) K. Okamoto and H. Kimura, On particular solutions of the Gamier systems and the hypergeometric functions of several variables, Quart. J. Math. Oxford (2), 37 (1986), 61-80. 6) S. Shimomura, Asymptotic expansions and Stokes multipliers of the confluent hypergeometric function Φ2, I, Proc. Roy. Soc. Edinburgh (A), 123 (1993), 1165-1177.
Right : [1] B. Dwork and F. Loeser, Hypergeometric series, Japan. J. Math., 19 (1993), 81-129. [2] A. Erdélyi, Integration of a certain system of linear partial differential equations of hypergeometric type, Proc. Roy. Soc. Edinburgh, 59 (1939), 224-241. [3] A. Erdélyi, Some confluent hypergeometric functions of two variables, Proc. Roy. Soc. Edinburgh, 60 (1940), 344-361. [4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, vols. 1 and 2, McGraw-Hill, New York, 1953. [5] K. Okamoto and H. Kimura, On particular solutions of the Garnier systems and the hypergeometric functions of several variables, Quart. J. Math. Oxford (2), 37 (1986), 61-80. [6] S. Shimomura, Asymptotic expansions and Stokes multipliers of the confluent hypergeometric function Φ2, I, Proc. Roy. Soc. Edinburgh (A), 123 (1993), 1165-1177.